
Off-the-shelf software limitations when stitching camera views for fulldome.
An over-rendering the camera-view technique to avoid seam edge issues.

By: Tom Casey - President/Creative Director - Home Run Pictures

Summary of paper:

All the available 3D computer generated animation software applications are designed primarily 
to create "framed" views (film and video). The application developers typically treat "what's 
beyond the view" as a throwaway and problems arise when stitching the multiple camera views 
when creating fulldome imagery. This paper will detail an approach that employs rendering an 
area beyond the needed camera view to "trick" the rendering software into creating camera-
views that will stitch together without visible seam edge issues. An explanation as to what 
elements in a scene can potentially cause problems, why these elements cause problems and 
how the over-rendering technique can eliminate the problem will be discussed. Although the 
solution will be implemented with the scripting tools available in Alias Maya software, similar 
techniques can be employed in any of the various software tools being used to create fulldome 
imagery.

Introduction:

The most common method for creating fulldome imagery using 3D computer generated imagery 
software applications involves the rendering of multiple camera views that are then stitched 
together. This method is popular because it is not limited to any particular software tool and is 
easy to implement in all the applications... Maya, Lightwave, 3D Max, etc. The artist/animator 
creates a grouping of five cameras with their eye view at a common point in space. Each camera 
is then rotated to look in directions correlating to front, back, left, right and top (up) at exactly a 90 
degree difference to each other... in traditional geometry you would say each camera is looking 
out from the origin towards the +x, -x, +z, -z, and +y axis assuming a y-up orientation (the -y is not 
rendered since it would be a view looking down). These five views are each rendered with a 
square 90 degree field of view so the entire 360 degree spherical scene is seen. When stitched 
together with the tools provided by the fulldome projection vendors, a master image is created 
that is essentially a polar projection of the surface of the dome.

In most instances, this method is an ample approach to generate the imagery desired. Objects in 
the scene made from various geometric descriptions (polygons, b-splines, nurbs, etc.) render 
correctly and the views stitch together with no artifacts at the seams of the five camera views. 
Unfortunately, all that is desired for the creation of imagery, can not be accomplished using 
straight geometric models. Today's software tools are more robust than ever and provide ways to 
accomplish the various looks desired using a variety of programming add-ons. Techniques, such 
as glows and particle generated atmospheres are accomplished using programming 
implementations that are at times computationally intensive. In order to reduce rendering times 
shortcuts are taken... and this is where problems arise.

Two common problems:

This paper will address two problems that arise when attempting to create fulldome imagery 
using the multiple camera approach. The first problem involves the use of glows around 
geometric objects in a scene. Since the subject material for many fulldome shows is of an 
astronomical nature, there are many instances where it is desirable to have glows around an 



object... a star, a planet's atmosphere, etc. The standard implementation for creating glows in 
most software packages will not stitch together without the seams being visible.

The second problem occurs when trying to achieve any atmospheric effect using a particle 
approach... a horizon, a nebula, a cloud, etc. In many software packages, the particles will not 
render correctly as they move close to the edges of a camera's view, once again creating a 
mismatch with the adjacent camera's view and a visible seam in the final master image.

Why these problems occur:

Both these problems are related to something that is a key goal in computer generated imagery 
applications... speed. In both cases, the developers opted to take a shortcut to achieve faster 
rendering of the final camera image.

In the case of glows, the software writers for just about every application use a 2D (flat 2-
dimensional) technique to achieve the desired effect. Glows are added as a post process (after 
the initial 3D rendering) where the objects in a scene that a glow is desired around have the glow 
added after rendering... in other words, the glow is a process implemented after the image is 
rendered and uses the finished image's pixels as its source. Since the final image is now only a 
2-dimensional picture, the frame is treated as "this is all there is." Glowing objects at the edges of 
the frame ignore the reality that they would continue past the frame and a glow which is not truly 
accurate is created. This works fine for "framed" applications, but will not work when stitching 
frames together for fulldome uses. The seam areas of the camera frames will not match.

Computer generated particle effects are generally render-intensive with, at times, tens of 
thousands of particles used to simulate what is desired. Dramatic effects can be achieved when 
the camera view moves through a "cloud" of particles. Since most particle rendering 
implementations attempt to minimize the number of particles necessary to render a look, many 
just clip away (delete) particles as they near the edge of the camera view. Once again this works 
fine for "framed" applications, but not for fulldome use. The particles will appear to pop on and off 
as they pass through a seam.

The over-rendering technique:

One method to overcome these limitations is to use an over-rendering technique to "trick" the 
rendering software to ignore the frame edge... or as in our implementation, move the frame edge 
out a little to create a correct "virtual" inner-edge for stitching purposes. For example, if your final 
camera images need to be 100x100 pixels in size, you render views that are 120x120 pixels and 
trim off 10 pixels around all the edges. Thus the new "edges" we end up stitching where rendered 
as an "inner" part of the image and will not display the unwanted edge seam artifacts. This 
technique will work for most instances involving object glowing and particle "popping" issues 
(depending on your software tool of choice). It will even vary greatly depending on what software 
version you have... application programers tend to change their implementations from version to 
version. Testing the technique for a given situation is the only way to determine if it will solve the 
problem in that instance.

There are two questions that need answering in the implementation of this technique. First it is 
necessary to determine how much "over-render" is necessary and second, what new camera 
angle to use to render the "over-render" and still maintain the necessary 90 degree field of view 
for each camera when we trim off the extra pixels.



The first question requires looking at each scene element and how objects pass out of the 
camera's field of view. In the case of a glow around an object, it is necessary to determine how 
wide the glow is when the object is near the edge. In a simplified treatment we will look at a 
sphere with a glow. Illustration A depicts a possible scenario.

Illustration A

The dark blue square represents the area that will be the final desired view for this particular 
camera with the lighter blue representing our "over render." Sphere number 1 is just at the edge 
of the final view, but the glow around it is partially outside the final view. In order to produce a glow 
that is not compromised by the frame edge, it will be necessary to render additional pixels out to 
the full extent of the glow. This way when the frame is trimmed and stitched, the glow should 
match up with the glow created by the adjacent camera view.

The way the glow render process is implemented in you software package will determine how 
you figure this. Typically the glow values are not measured in pixel width, but a value that 
represents amount of glow verses total resolution of the image. If your software package allows 
you to render out the glow portion of the image separately, it may be possible to look at that 
image and count the pixels in the glow to determine the necessary over-render. The only way to 
truly determine the correct over-render is by testing. Eventually, you might be able to calculate this 
with some inside knowledge about your particular software application, but generally it is best to 
just test the frames suspected of having seam issues. 

Notice that sphere number 2 has almost entirely moved outside the area we intend to keep for 
stitching. The glow around it will still be created and will then match across the seam during 
stitching. Once you have determined the pixel width necessary to fully cover for glows, this 
additional number of pixels will be added to the desired resolution to end up with your over-render 
resolution. In illustration B, two trimmed frames are shown side by side in their final stitched 
orientation with glows that now are correctly rendered. 

Illustration B



The same process can be used to determine how much over-render is necessary when using 
particles to create a desired effect. Illustration C depicts a possible scenario.

Illustration C

Some software packages will determine if a particle is beyond the frame edge and clip (delete) it 
from the render. This works fine and may be unnoticeable if the particle is not very large. But in 
the case where the camera view is traveling through the particles and some particles are very 
close to the viewer, large particles will pop off. One workaround would be to increase the number 
of particles and make them smaller, but this could create much longer render times. The 
additional time required to render the over-render must be compared to the increased render 
time with more, smaller particles to see which is a better solution. Still, the problem of the camera 
view passing so close to the particles that they appear large in the view and are clipped may only 
be avoided by using the over-render technique.

Most applications consider the middle of the particle as a determining factor when leaving the 
edge of the frame, so adding half the size of the particle's closest size at the edge of the frame is 
usually sufficient for the over-render technique to work. In some instances you may need to over-
render the complete size of the particles. Once again, your particular software application may be 
different and testing is the only sure way to determine what will work for you.

Determining over-render camera field of view:

Once you have arrived at the necessary over-render to achieve a clean final stitch of your camera 
views, you will need to determine what expanded camera field of view is necessary while 
maintaining the final pixel resolution after trimming off the extra pixels. We know that the final 
frame must represent a 90 degree field of view to stitch correctly, so some simple trigonometry is 
necessary to determine what resolution as well as field of view to render the over-rendered pre-
trimmed frame for this to work.



Illustration D

In order for the base of the triangle to have the desired number of pixels in the final rendered 
image that we use to stitch, we need to increase the resolution for the over-render by a certain 
number of pixels and determine the larger field of view angle for our camera. It's easiest to think 
in terms of half the image resolution and then double it so we can use a right triangle and all the 
mathematical relationships that can be assumed there. In this illustration the black lines represent 
the 90 degree field of view we need to correctly stitch our fulldome master and the red lines 
indicate the area that will be over-rendered (and trimmed). So you can see that the field of view 
will expand to create the extra pixels we will eventually trim off. You will need to create an 
appropriate equation to implement this in your particular software. Your computer or a 
programmable calculator can be used to do this. The rendering camera's field of view (FOV) for 
our sample 120x120 pixel image being trimmed to 100x100 would be calculated...

FOV = atan(120*tan(90*PI/360)/100)*360/PI

Below is the script we use at Home Run Pictures, written using the Alias Maya MEL language 
that determines the field of view from an input of the desired final resolution in pixels and the 
desired over-render resolution in pixels.

global proc float expandedFov( float $oldFov, float $oldRes, float $newRes ) { float $PI = 
3.1415926535897932; return( atan( $newRes * tan( $oldFov * $PI/360)/$oldRes) * 360/$PI ); }

The desired final resolution and field of view (90 degrees for fulldome) is entered along with the 
over-render resolution and the script returns the new camera field of view to render with. If your 
software allows you to render a section of your full image, you could even go further and have it 
render only the area you want, but still consider the over-render area in its calculations... thus 
avoiding the need to trim off the over-render. This will work for particles, but not work with glows 
since the rendered image's final pixels are what is used to calculate the glow.

Conclusion:

Once you have your over-rendered camera frames, you will just need to trim off the extra pixels 
and stitch as usual. There will be instances where the seams will not stitch correctly without very 
large over-renders being necessary... making the additional render costs undesirable. In this 
case, and if there are only a few frames with problems you can choose to over-render only those 
frames as a fix. 

At Home Run Pictures, we have found this technique to work effectively for most glowing and 
particle scenarios where seam visibility problems occurred during the stitching process.



 

For further information, contact: Tom Casey - Home Run Pictures + www.hrpictures.com

100 First Avenue, Suite 450 + Pittsburgh, PA 15222 + tom@hrpictures.com + 412-391-8200

 


